

U
S

E
R

 G
U

ID
E

> Std RS232 Protocol

ii

Datalogic S.r.l.
Via S. Vitalino 13
40012 – Calderara di Reno
Italy

Std RS232 Protocol User Guide

Ed.: 09/2017

Helpful links at www.datalogic.com: Contact Us, Terms and Conditions, Support.

© 2010 - 2017 Datalogic S.p.A. and/or its affiliates ALL RIGHTS RESERVED. Without
limiting the rights under copyright, no part of this documentation may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by any means,
or for any purpose, without the express written permission of Datalogic S.p.A. and/or its
affiliates. Datalogic and the Datalogic logo are registered trademarks of Datalogic S.p.A. in
many countries, including the U.S.A. and the E.U.

Lighter Suite is trademark of Datalogic S.p.A. and/or affiliates. All other trademarks and
brands are property of their respective owners.

Datalogic reserves the right to make modifications and improvements without prior
notification.
Datalogic shall not be liable for technical or editorial errors or omissions contained herein,
nor for incidental or consequential damages resulting from the use of this material.

Ed. 09/2017

 iii

REVISION INDEX

Revision Date Number of added or edited pages

04/2010 2010-04-13 Release

01/2012 2012-01-03 Review

02/2013 2013-02-13 Review

09/2017 2017-09-22 ii

NOTE:
We sometimes update the documentation after original publication. Therefore, you should also
review the documentation at www.datalogic.com for updates.

iv

TABLE OF CONTENTS

REVISION INDEX 3

TABLE OF CONTENTS 4

1. PROTOCOL 5

1.1 INTRODUCTION 5
1.2 CUSTOMIZATION 5
1.3 PROJECT DESCRIPTION 7
1.4 LINK LAYER 8
1.5 END OF MARKING PROCESS 8
1.6 THE PROTOCOL 8

1.6.1 Layout Selection 9
1.6.2 Text setting 9
1.6.3 Echo 10
1.6.4 Status request 10
1.6.5 Variable get/set 11
1.6.6 Start command 13
1.6.7 Stop command 13
1.6.8 Version request 13
1.6.9 System time request 14
1.6.10 Diode time request 15

PROTOCOL

 5

1

1. PROTOCOL

1.1 INTRODUCTION
Deployed with the Lighter Suite, you get some project examples. In order to be able to manage the laser
operations, you can use the project “Std RS-232” which implements the protocol described in this document
over a RS-232 link.
The protocol is compatible with the old one provided by the “std-rs232.vbs” Smartist script. The addictions
are some commands (Smartist supported just three of them) and the “End of Mark signal”.
The RS-232 link grants a full duplex communication, but the protocol is designed as a master-slave, where
the Lighter project represents the slave part, interpreting and executing the commands provided by a third
part service.
Once started the project it opens the port (see Table 1 - Com port initial settings) and starts listening on it,
waiting for a valid command sequence.

1.2 CUSTOMIZATION
This project is designed to provide a common application that can be used for testing laser application
capabilities and as a project for easy customization, where third-party applications need to control the laser
system.
The user needing this project works for its purposes should check and set:

1. port settings – defined in the “function classPort” in the “Port.qs” file.
2. layouts – defined in the array works in the “main.qs” file.

From the project version 1.2, users can add as many layouts as they want. Please consider that layouts are
all loaded when the project starts, this can result in a slow load (READY output signal can take a longer time
to be set high and the graphic dialog could take more time to be showed) but once a layout selection
command is received, the layout switch is done very fast.
The project is deployed with two layouts as stated in Table 4 - Layouts definitions, in order to modify the
project for using other prepared layouts, please follow this steps:
Prepare all needed layouts and store them as XLP files in a folder the device can access to.
Remove old layouts.

Modify the works array definitions (main.qs file) according to the layout you are going to use. Please take
care about the three fields required for each layout, where the first one is the ID to be used for layout
selection command (see paragraph for further details) , the second one is the file path for layout retrieval, the
third one is used by the project, so leave it as zero valued.

STD RS232 PROTOCOL

6

1

In the figure above layouts there are an example with 8 layouts stored in different folders just to show the
capability of the script (plane01 has no path specification while plane03 is indicated being in the c:\temp
folder). You are invited storing all the planes in the layouts folder (from Editor just save document to device),
or importing the planes as project resources (see picture below) and they will be collected and stored in the
project folder.

Even if the previous works array definition is correct, you are invited using the one showed here below.

PROTOCOL

 7

1

1.3 PROJECT DESCRIPTION
The project consists of 5 source files and 2 layout files.

• main.qs – hosts the entry point function “main”, the objects allocation and the main interaction, the
layouts table.

• GUI.qs – defines the graphical user interface through the classMainWindow class

• Util.qs – contains some functions used in many places of the code.

• Protocol.qs – defines the start and end bytes, the protocol management and parsing methods
through the classProtocol class.

• Port.qs – hosts the classPort class which allow the management of the PC COM port. It also
defines the initial settings for port opening. They are:

Setting Value
Port name COM1
Baud rate 57600
Flow control Off
Parity No
Data bits 8
Stop bit 1

1 - Com port initial settings

WARNING:
Starting from project version 2.0, user can permanently change the COM port setting directly from
the user interface without manually changing the Port.qs file. The COM port setting will be saved in
the config.txt files present in the project folder
Using project prior to version 2.0 is possible to change the COM port setting from the user interface
but they will not be saved. User who need to change the COM port setting permanently must change
manually the classPort function in the port.qs file, where the default parameters are set.

STD RS232 PROTOCOL

8

1

1.4 LINK LAYER
Port settings are initially set in the constructor in the Port.qs file. They can also be changed by the user with
the graphic interface and applied once the port is reopened.
Each message is a byte sequence starting with the ESCAPE byte and terminating with the TERMINATOR
one (see “Table 2 - Special bytes values”). The only exception is the byte (ENDOFMARK) sent by this
client when the laser terminates the marking process.
Each byte of a message is transmitted immediately after the preceding one, with no wait between. The
message is parsed once the TERMINATOR byte is received.
The client application realized with this project monitors the COM port waiting for the underlying object
signalling data availability; this way the resource consumption results very low.

1.5 END OF MARKING PROCESS
When the marking process terminates, this client application sends a byte through the Com port signalling
this event. The byte is set to ENDOFMARK (see Table 2 - Special bytes values).

1.6 THE PROTOCOL
Commands and answers of this protocol are exchanged as byte sequences each one starting with the
ESCAPE byte and terminating with the TERMINATOR one.

Byte ASCII DEC HEX BIN
ESCAPE 27 1B 00011011
TERMINATOR 13 0D 00001101
SEPARATOR , 44 2C 00101100
ENDOFMARK 7 7 00000111

2 - Special bytes values

These bytes value are defined in the Protocol.qs file in the first lines.
The second byte is the command identifier, an ASCII character indicating the command to be executed.

Command ASCII DEC HEX BIN
Layout selection S 83 53 01010011
Text setting D 68 44 01000100
Echo E 69 45 01000101
Status request T 84 54 01010100
Variable get/set C 67 43 01000011
Start command X 88 58 01011000
Stop command P 80 50 01010000
Version request V 86 56 01010110
System time request Y 89 59 01011001
Diode time request I 73 49 01001001

3 - Command bytes

The other part of the sequence varies according to the command specifications.

PROTOCOL

 9

1

1.6.1 Layout Selection
Command:
ESCAPE S <layout identifier> TERMINATOR

This command allows the selection of a layout from those defined in the main.qs file in the array works.

ID FileName
01 circle.xlp
02 square.xlp

4 - Layouts definitions

The <layout identifier> is an ASCII string reporting the ID as defined in the first column of the array works
(see Table 4 - Layouts definitions).
Once the command is executed the layout is updated and showed in the preview area. No answer is sent.

Example:

Byte Symbol Meaning
27 ESCAPE
83 S Layout Selection
48 0

Layout Identifier = 01
49 1
13 CR TERMINATOR
27 ESCAPE
68 D Text Setting
48 0

String Identifier = 01
49 1
44 , SEPARATOR
72 H

String Content = Hello
101 e
108 l
108 l
111 o
13 CR TERMINATOR

5 - Layout Selection and text setting example

1.6.2 Text setting
Command:
ESCAPE D <string identifier> , <string content> TERMINATOR

This command sets the content of the string with the ID given by the <string identifier> and the value
provided by the <string content>. The string is searched in the current plane which is the first one in the
works array (see Table 4 - Layouts definitions) or the one set by the.
The example is reported in Table 5 - Layout Selection and text setting example. No answer is sent.

STD RS232 PROTOCOL

10

1

1.6.3 Echo
Command:
ESCAPE E <byte sequence> TERMINATOR

Answer:
ESCAPE E <byte sequence> TERMINATOR

This command is normally used just for checking the link correct behaviour or for keep-alive function (test if
the counterpart is active or not). As the client receives this kind of command, it just replies with an exact copy
of the message to the sender.

In the example below is reported the command which is identical to the answer:

Byte Symbol Meaning
27 ESCAPE
69 E Echo
48 0

Byte sequence

49 1
27
68 D
48 0
49 1
44 ,
72 H
101 e
108 l
108 l
111 o
13 CR TERMINATOR

6 - Echo example

1.6.4 Status request
Command:
ESCAPE T TERMINATOR

Answer:
ESCAPE T <ASCII sequence> TERMINATOR

This command queries the client about the device status. Possible answer are those reported in Table 7 -
Status possible values.

System:SystemStates Numeric values
SYSTEM_OFF 0
SYSTEM_WARM_UP 1
SYSTEM_WAIT 2
SYSTEM_STAND_BY 3
SYSTEM_STAND_BY_SHUTTER_CLOSED 4
SYSTEM_READY 5
SYSTEM_READY_SHUTTER_CLOSED 6
SYSTEM_BUSY 7
SYSTEM_WARNING 8
SYSTEM_ERROR 9

7 - Status possible values

PROTOCOL

 11

1

Example:

Byte Symbol Meaning
27 ESCAPE
84 T Status Request
13 CR TERMINATOR

8 - Status request example

Byte Symbol Meaning
27 ESCAPE
84 T Status Answer
0 SYSTEM_OFF
13 CR TERMINATOR

9 - Status answer example

1.6.5 Variable get/set
This command can get or set the content of a global variable according to the command format. If the
identifier of the variable is followed by the SEPARATOR byte (see Table 2 - Special bytes values) and an
ASCII sequence, the global variable identified by the <variable identifier> is set to a value according to the
<ASCII sequence>, otherwise an answer composed as specified below is sent.
Get command:
ESCAPE C <variable identifier> TERMINATOR

Answer:
ESCAPE C <variable identifier> SEPARATOR <ASCII sequence> TERMINATOR

Byte Symbol Meaning
27 ESCAPE
67 C Variable Get
88 X

Variable identifier = XX 88 X
13 CR TERMINATOR

10 - Variable Get Example

Byte Symbol Meaning
27 ESCAPE
67 C Variable Get Answer
88 X

Variable Identifier = XX 88 X
44 , SEPARATOR
49 1

ASCII Sequence = 10 48 0
13 CR TERMINATOR

11 - Variable Get Answer Example

STD RS232 PROTOCOL

12

1

Set Command:
ESCAPE C <variable identifier> , <ASCII sequence> TERMINATOR

WARNING:
The master application can’t set a numeric variable to an alphabetical sequence of characters and
no error is returned.

Byte Symbol Meaning
27 ESCAPE
67 C Variable Set
89 Y

Variable Identifier = YY 89 Y
44 , SEPARATOR
84 T

ASCII Sequence =
Testo da seriale

101 e
115 s
116 t
111 o
32
100 d
97 a
32
115 s
101 e
114 r
105 i
97 a
108 l
101 e
13 CR TERMINATOR

12 - Variable Set Example

PROTOCOL

 13

1

1.6.6 Start command
Command:
ESCAPE X TERMINATOR

This command asks the client starts marking the currently selected layout then shows it in the preview area.
No answer is sent.

Example:

Byte Symbol Meaning
27 ESCAPE
83 S Layout Selection
48 0

Layout Identifier = 01
49 1
13 CR TERMINATOR
27 ESCAPE
88 X Start Command
13 CR TERMINATOR
27 ESCAPE
80 P End Command
13 CR TERMINATOR

13 - Example sequence with Selection,Start and Stop

1.6.7 Stop command
Command:
ESCAPE P TERMINATOR

This command asks the client stops marking the layout currently in progress (if any).
The example is reported in Table 13 - Example sequence with Selection,Start and Stop. No answer is
sent.

1.6.8 Version request
Command:
ESCAPE V TERMINATOR

Answer:
ESCAPE V <ASCII sequence> TERMINATOR

This command queries the client about the software version is running on the host. The answer carries the
Laser Engine version the project is hosted in. The version is provided as a string of ASCII characters.

Example:

Byte Symbol Meaning
27 ESCAPE
86 V Version request
13 CR TERMINATOR

14 - Version Request Example

STD RS232 PROTOCOL

14

1

Byte Symbol Meaning
27 ESCAPE
86 V Version Answer
53 5

ASCII Sequence =
5.2.0 alpha

46 .
50 2
46 .
48 0
32
97 a
108 l
112 p
104 h
97 a
13 CR TERMINATOR

15 - Version Answer Example

1.6.9 System time request
Command:
ESCAPE Y TERMINATOR

Answer:
ESCAPE Y <ASCII sequence> TERMINATOR

This command can get the number of seconds the system has been running. This number is provided as a
string of ASCII characters. It can report ‘-1’ if the device is not connected or not turned on.

Example:

Byte Symbol Meaning
27 ESCAPE
89 Y System Time Request
13 CR TERMINATOR

16 - System time request example

Byte Symbol Meaning
27 ESCAPE
89 Y System Time Answer
45 -

ASCII Sequenze = -1
49 1
13 CR TERMINATOR

17 - System time answer example

PROTOCOL

 15

1

1.6.10 Diode time request
Command:
ESCAPE I TERMINATOR

Answer:
ESCAPE I <ASCII sequence> TERMINATOR

This command can get the number of seconds the diode has been running. This number is provided as a
string of ASCII characters.

Example:

Byte Symbol Meaning
27 ESCAPE
73 I Diode Time Request
13 CR TERMINATOR

18 - Diode time request example

Byte Symbol Meaning
27 ESCAPE
73 I Diode Time Answer
45 -

ASCII Sequenze = -1
49 1
13 CR TERMINATOR

19 - Diode time answer example

	REVISION INDEX
	TABLE OF CONTENTS
	1. PROTOCOL
	1.1 Introduction
	1.2 Customization
	1.3 Project Description
	1.4 Link Layer
	1.5 End of Marking Process
	1.6 The Protocol
	1.6.1 Layout Selection
	1.6.2 Text setting
	1.6.3 Echo
	1.6.4 Status request
	1.6.5 Variable get/set
	1.6.6 Start command
	1.6.7 Stop command
	1.6.8 Version request
	1.6.9 System time request
	1.6.10 Diode time request

